Formation of Metallamacrocycles from Palladium(II), Platinum(II) and Copper(I) Complexes and the Ditopic Ligands [{p-(Ph₂PO)C₆H₄}₂CMe₂], [{2-Ph₂PO-3,5-(Me₃C)₂C₆H₂}₂S], [{p-[(C₁₀H₆O)₂PO]C₆H₄}₂CMe₂]

Carmela Grazia Arena,^[a] Dario Drommi,^[a] Felice Faraone,*^[a] Claudia Graiff,^[b] and Antonio Tiripicchio^[b]

Keywords: Macrocycles / Metallacycles / Palladium / Platinum / Copper

The ligands bis(phosphinito) [{2-Ph₂PO-3,5and chiral bis(phosphite) [{p- $(Me_3C)_2C_6H_2\}_2S$] (4) $[(C_{10}H_6O)_2PO]C_6H_4\}_2CMe_2$ (5) were synthesised and their reactions with palladium(II), platinum(II), copper(I) substrates were studied. The ligand 3 [$\{p-(Ph_2PO)C_6H_4\}_2CMe_2$], previously reported by us, was also used in the same reactions. Ligands 3 and 5 formed 28-membered metallamacrocycles while ligand 4 afforded the analogous compound only in the reaction with the copper(I) substrate. In the reaction of 3 with $[Pd(PhCN)_2Cl_2]$ the metallamacrocycle $[PdCl_2(\mu-3)]_2$ (6) or the oligomer $[Pd_2Cl_4(\mu-3)]_n$ (7) were formed, depending on the molar ratio used. The reaction of 3 with $[Pd(\eta^3 C_3H_5$)Cl]₂ afforded compound {[Pd(η^3 -C₃H₅)Cl]₂(μ -3)} (8). The allylpalladium macrocycle $[Pd(\eta^3-C_3H_5)(\mu-3)]_2[OTf]_2$ (9) was obtained by treating a solution of 8 in THF with AgCF₃SO₃. The reactions of ligand **3** with [Pt(COD)I₂] or [Cu(NCCH₃)₄]BF₄ led to the formation of metallamacrocycles [PtI₂(μ -**3**)]₂ (**10**) and [Cu₂(μ -**3**)₂][BF₄]₂·2CH₃CN (**11**), respectively. The structure of **10** was also elucidated by X-ray analysis. Reactions of **4** with palladium(II) and platinum(II) complexes afforded a mixture of two very different compounds in almost an equimolar ratio. An X-ray analysis established that one is a mononuclear compound, formed by modification of the ligand **4**, containing a P,S-chelate, namely {PdCl₂{[2-Ph₂PO-3,5(Me₃C)₂C₆H₂][3,5-(Me₃C)₂C₆H₂OH]S}] (**12**). The reaction between [Cu(NCCH₃)₄]BF₄ and **4** afforded the ionic metallamacrocycle [Cu(μ -**4**)][BF₄]₂·2CH₃CN (**14**). In compound **10**, the size of the central cavity formed by the bridging ligand **3** was determined.

Introduction

In the last twenty years a number of studies have indicated that hydrogen bond formation is not the unique mode through which the supramolecular self-assembly of molecules can occur and coordination bond formation was found to be a very useful tool to promote supramolecular selfassembly processes.^[1a,2] In fact the preferred coordination numbers, the geometry of transition metal complexes and the shape of the bi- and polydentate ligands drives a spontaneous supramolecular self-assembly process to give metallamacrocycles with trigonal, square-planar, and tetrahedral coordinated metal ions.^[2] In this context, a renewed interest in metallamacrocycles has recently been observed. Additionally, they can potentially act as host molecules in the generation of supramolecular architectures.^[3] Several bi- or polydentate rigid aromatic nitrogen ligands have been used in reactions with transition metal complexes, generally in a square-planar configuration, to induce metallamacrocyclic structure formation.^[1,4] Recently,^[5] "flexible" non-chelating proligands HE-EH [HE-EH = $1,4-(HOCH_2)_2C_6H_4$, 1,3-(HOCH₂)₂C₆H₄, (4-HOC₆H₄)₂CH₂] have been used in the

Lately, [6] we have synthesized the large valence angle bis(p-phosphinito) ligands [p-(Ph₂PO)C₆H₄]₂X (X = O, 1; S, 2; CMe₂, 3), designed to induce a bridging coordination in transition metal complexes. The reactions of 1–3 with [Ru(p-cymene)Cl₂]₂, [Rh(C₅Me₅)Cl₂]₂, [Rh(C₅H₅)(CO)₂]₂ gave dinuclear complexes in which the two metal centres are bridged by only one phosphinito ligand. [6]

In this paper we report the synthesis of the new ligands bis(phosphinito) [$\{2\text{-Ph}_2\text{PO-3},5\text{-}(\text{Me}_3\text{C})_2\text{C}_6\text{H}_2\}_2\text{S}$] (4) and chiral bis(phosphite) [$\{p\text{-}[(\text{C}_{10}\text{H}_6\text{O})_2\text{PO}]\text{C}_6\text{H}_4\}_2\text{CMe}_2$] (5), and the reactions of 3, 4 and 5 with palladium(II), platinum(II), and copper(I) substrates. The crystal structures of the dichloromethane solvates of the macrocyclic dinuclear complex [Pt{[p-(Ph}_2\text{PO})\text{C}_6\text{H}_4]_2\text{CMe}_2\}I_2]_2 (10) and of [PdCl $_2\{\{\text{2-Ph}_2\text{PO-3},5\text{-}(\text{CMe}_3)_2\text{-}\text{C}_6\text{H}_2\text{OH}]\text{S}\}$] (12) are also reported.

Results and Discussion

Synthesis of Ligands 4 and 5

In order to synthesise a bis(phosphinito) ligand with a bigger steric requirement than ligands 1-3, we prepared

reaction with $[Mo(NO)(tp^*)I_2]_2$ $\{tp^* = HB(3,5-Me_2C_3HN_2)_3\}$ in the presence of NEt₃, to afford the dinuclear metallacyclophanes $[Mo(NO)(tp^*)(E-E)]_2$ as the major product. In these reactions, kinetic control in the formation of the dinuclear metallamacrocycles was observed.

[[]a] Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica-Università di Messina,

Salita Sperone 31, Vill. S. Agata, 98166 Messina, Italy
Dipartimento di Chimica Generale ed Inorganica, Chimica
Analitica, Chimica Fisica, Università di Parma, Centro di
Studio per la Strutturistica Diffrattometrica del CNR,
Parco Area delle Scienze 17A, 43100 Parma, Italy

ligand 4 which has sulfur as the bridging atom, two phosphinito groups at the 2-position, and four *tert*-butyl groups as substituents in the aromatic moieties.

Ligand **4** was synthesised by treating 4,4′,6,6′-di-*tert*-butyl-2,2′-thiobisphenol^[7] with PPh₂Cl and an excess of NEt₃ in toluene at room temperature. Several recrystallisations from hexane gave the pure product **4** as a white moderately air-stable powder, which was analysed by 31 P{ 1 H}, 1 H NMR spectroscopy and GCMAS. In the 31 P{ 1 H} NMR spectrum (CDCl₃ solution), a singlet appears at $\delta = 117.1$ and in the 1 H NMR two singlets at $\delta = 1.26$ and 1.31 due to *tert*-butyl groups as well as signals due to aromatic groups are seen. In the mass spectrum, a molecular peak at 810 was observed.

Ligand 5 has the same backbone as 3, but it is chiral owing to the presence of two chiral configurationally resolved binaphthol groups. It was prepared by lithiation of 2,2-bis(4-hydroxyphenyl)propane in THF and subsequent addition of the lithium derivative to a solution of (S)-(1,1'-binaphthalene-2,2'-dioxy)chlorophosphane^[8] in the same solvent at room temperature. The pure product was isolated as a white, air-sensitive powder and characterised by NMR spectroscopy. The 31 P{ 1 H} NMR spectrum (C_{6} D $_{6}$ solution), shows a singlet at $\delta = 144.79$ while the 1 H NMR exhibits a signal at $\delta = 1.47$ due to the CH $_{3}$ groups as well as two doublets at $\delta = 6.96$ and 7.0 (J = 3 Hz) due to the p-substituted phenyl groups. Multiplets in the range $\delta = 7.45-7.64$ due to the binaphthyl protons are also observed.

Ligands 3–5 were designed to induce a bridging coordination to transition metal centres. Structural determination of dinuclear Ru^{II} complexes containing ligand 3 proved that the P–P distance is longer than 9 Å^[6] and therefore a *cis* or *trans* chelating bonding mode for ligands 3 and 5 is not expected.

Reactions of Ligands 3–5 with Palladium(II), Platinum(II) and Copper(I) Complexes

The reaction of 3 with $[Pd(PhCN)_2Cl_2]$ in a 1:1 molar ratio in toluene produced a yellow precipitate which was analysed as metallamacrocycle $[PdCl_2(\mu-3)]_2$ (6).

It is air-stable, soluble in chlorinated solvents and proved to be non-conducting in acetone solution. In agreement with the proposed structure, the $^{31}P\{^{1}H\}$ NMR spectrum (CDCl₃), shows a singlet at $\delta=109.0$ while the ^{1}H NMR spectrum features a singlet at $\delta=1.46$ due to the C(CH₃)₂ group together with the characteristic resonances of phenyl rings.

When a solution of 3 in toluene was added to a solution of $[Pd(PhCN)_2Cl_2]$ in the same solvent in a 1:2 molar ratio, an orange-brown precipitate quickly formed which was insoluble in common organic solvents and analysed as $[Pd_2Cl_4(3)]$ (7). Compound 7 dissolves moderately only in coordinating solvents such as CH_3CN and DMF.

The ${}^{31}P\{{}^{1}H\}$ NMR spectrum of 7 in CD₃CN shows a resonance at $\delta = 106.3$ as a sharp singlet which is consistent with a symmetric geometry. The ${}^{1}H$ NMR spectrum shows a singlet at $\delta = 1.37$ due to the isopropyl group, together with the signals of the aromatic rings in the correct integration ratio. Although it was not possible to obtain useful information from the mass spectrum because of the wide fragmentation of the compound 7, on the basis of NMR spectroscopic data and the observed chemical properties, we

deduced that 7 was an oligomer, $[Pd_2Cl_4(\mu-3)]_n$, in which the chloride and the phosphinito ligands alternately coordinate as bridges to palladium(II) centres. In coordinating solvents such as CH_3CN and DMF, a break of the chloro bridge probably occurs but the oligomeric structure is maintained. Furthermore, the 1H NMR spectra of 7 (CD_3CN solution) shows features which indicate that scrambling processes take place. The proposed structure of 7 is in agreement with the trend of the palladium(II) to give biand polynuclear chloro-bridged compounds. [9] Reaction of $[Pd(\eta^3-C_3H_5)Cl]_2$ with 3 in a 1:1 molar ratio afforded the expected dinuclear compound $\{[Pd(\eta^3-C_3H_5)Cl]_2(\mu-3)\}$ (8) in which the two metal atoms are bridged by only one phosphinito ligand.

This is corroborated by the ³¹P{¹H} NMR spectrum (CDCl₃ solution), which shows a sharp singlet at δ = 123.29, indicating a plane of symmetry in the molecule. In the ¹H NMR spectrum, the singlet at $\delta = 1.55$ was assigned to the isopropyl group. A ¹H NOESY experiment made the assignment of each allylic proton signal possible: two broad multiplets at $\delta = 2.20$ ($^3J = 12$ Hz, $H_{b'}$) and at $\delta = 3.13$ $(J = 6 \text{ Hz}, \text{ H}_b)$, two doublets of doublets at $\delta = 3.57 \, (^3J =$ 11 Hz, $J_{PH} = 15$ Hz, Ha') and at $\delta = 4.67$ ($J_{PH} = 7$ Hz, H_a), one multiplet at $\delta = 5.22$ (H_c). Phase-sensitive $2D^{-1}H$ NOESY spectrum shows NOE peaks between H_c and its vicinal H_a and H_b protons. The analysis of the NMR spectroscopic data led us to conclude that a dynamic process, fast on the NMR time scale, was taking place and that it involved all the allylic protons in the molecule. This process is due to two concurrent $\eta^3 - \eta^1 - \eta^3$ rearrangements of the allylic fragment.[10]

In order to prepare an allylpalladium macrocycle, a solution of $\{Pd(\eta^3-C_3H_5)Cl]_2(\mu-3)\}$ (8) in THF was initially treated with AgCF₃SO₃ in a 1:2 molar ratio, and after filtration of the AgCl precipitate, was further treated with 1 equivalent of 3. The white dinuclear allylpalladium macrocycle $[Pd(\eta^3-C_3H_5)(\mu-3)]_2[OTf]_2$ (9) was obtained in good yield and was characterised by microanalysis, NMR spectroscopy and conductivity measurements.

The presence of a broad signal at $\delta = 120.6$ in the $^{31}P\{^{1}H\}$ NMR spectrum (CDCl₃), revealed a complex fluxional process in the complex. This was further supported by the broadness of the signals observed in the ^{1}H NMR spectra recorded over a wide range of temperatures.

Reaction of [Pt(COD)I₂] with ligand 3 in an equimolar ratio proceed in a similar way to that with [Pd(PhCN)₂Cl₂]. Addition of ligand 3 to a toluene solution of [Pt(COD)I₂] led to the formation of metallamacrocycle [PtI₂(μ -3)]₂ (10) as a yellow precipitate which was characterized by NMR spectroscopy and X-ray analysis. As expected, the ³¹P{¹H} NMR spectrum (CDCl₃) displays a peak at $\delta = 81.81$, together with satellites due to ¹⁹⁵Pt-P coupling ($J_{PtP} = 3968$ Hz), and the ¹H NMR spectrum features all ligand signals in the correct integration ratio.

Crystal Structure of [PtI₂(µ-3)]₂·2CH₂Cl₂ (10·2CH₂Cl₂)

A view of the structure of complex 10 is shown in Figure 1, together with the numbering system. Selected bond lengths and angles are given in Table 1. The metallamacrocycle has an imposed crystallographic C_2 symmetry.

The coordination at Pt is square-planar and involves two P atoms mutually in cis position and two I atoms. The two Pt-I [2.6523(11) and 2.6562(9) Å] and Pt-P [both 2.259(2) A] bond lengths are equal. The most interesting feature is the 28-membered metallacycle; the conformation of the ring is shown in Figure 2. The central cavity seems to be too small to bind even small guest molecules. Critical cross-ring interatomic distances are C23···C23' (3.983 A), C23-C24' and C23'-C24 (4.078 Å). The apex indicates an atom related by the twofold axis. The Pt-Pt' and C7-C7' separations are 13.071 and 8.974 A, respectively. Furthermore, two phenyl groups at P2 point to the same side of the ring, facing one another, the shortest contacts involving C31···C31' (3.690 Å), C31–C32' and C31'–C32 (3.983 Å). It is worth noting that the O2 atom is involved in an intermolecular hydrogen bond with the Cl2 atom [O2···Cl2 = 3.048(5), C12···H2 = 2.32(5) Å; $02-H2-C12 = 157(5)^{\circ}$].

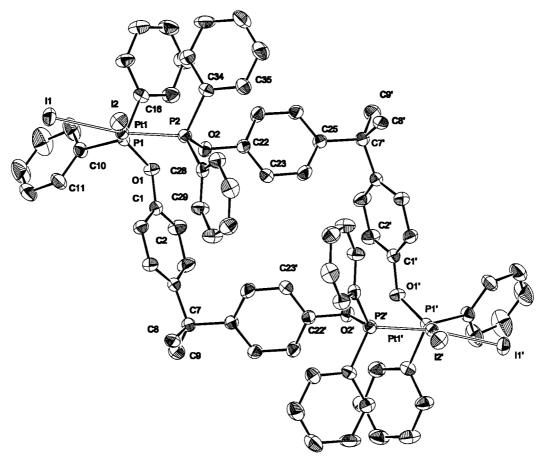


Figure 1. ORTEP view of the structure of the complex 10 together with the numbering scheme; the ellipsoids for the atoms are drawn at the 30% probability level

The reaction between [Cu(NCCH₃)₄]BF₄ and ligand **3** in a 1:1 molar ratio in dichloromethane solution, afforded the metallamacrocycle [Cu₂(μ -**3**)₂][BF₄]₂·2CH₃CN (**11**) as a white solid. Conductivity measurements in methanol solution proved that compound **11** is a 2:1 electrolyte. The ³¹P{¹H} NMR spectrum displays a singlet at δ = 99.06, while the ¹H NMR spectrum (CDCl₃ solution) in addition to the expected signals, also shows a singlet at δ = 1.55 due to the CH₃CN molecule of crystallisation. The coordination of acetonitrile to the metal centre can be excluded, since the observed chemical shift is the same as that of the free CH₃CN.

Reactions of **4** with Pd^{II} and Pt^{II} complexes gave different results from those reported for ligands **3**. Addition of one equivalent of **4** to a solution of $[Pd(PhCN)_2Cl_2]$ in toluene afforded a mixture of two very different compounds, **12** and **13**, in a 42:58 ratio, each giving rise to a singlet at $\delta = 135.66$ and 78.79, respectively, in the $^{31}P\{^{1}H\}$ NMR spectrum (CDCl₃).

Fractional crystallisation from CH_2Cl_2 /hexane allowed us to separate the two compounds. Thus, **12** was obtained as yellow crystals which exhibit only a signal at $\delta = 135.66$ in the $^{31}P\{^{1}H\}$ NMR in CDCl₃. An X-ray analysis carried out on these crystals established that it has formula $[PdCl_2\{[2-Ph_2PO-3,5-(CMe_3)_2C_6H_2][3,5-(CMe_3)_2-C_6H_2OH]S\}]$.

Crystal Structure of [PdCl₂{[2-Ph₂PO-3,5-(CMe₃)₂C₆H₂]-[3,5-(CMe₃)₂-C₆H₂OH|S}]·2CH₂Cl₂ (12·2CH₂Cl₂)

A view of the structure of complex 12 is shown in Figure 3 together with the numbering system. Selected bond lengths and angles are given in Table 2. The coordination at Pd is square-planar and involves two Cl atoms and the P1 and S1 from the chelating ligand, obtained by fragmentation of 4. The six-membered chelating ligand is in a boat conformation with the two near-planar S1PdP101 and 01C13C18S1 moieties forming a dihedral angle of 41.1(1)°. The Pd-P1 and Pd-S1 bond lengths are 2.1985(15) and 2.2770(13) Å, respectively. The Pd-Cl1 and Pd-Cl2 bond lengths, 2.3149(14) and 2.3769(15) Å respectively, are rather different; the bond *trans* to the P atom is longer.

In light of the structure determined for 12, we may consider two hypotheses based on this result. One could explain the hydrolysis of one P-O bond in the pure ligand as being due to the presence of water in the solvent. However, this can be excluded since the reaction was repeated several

Formation of Metallamacrocycles **FULL PAPER**

120.0(2)

123.8(4)

114.7(6)

109.11(19) 128.5(4)

Table 1. Selected bond lengths [A] and angles [°] for 10·2CH₂Cl₂ (symmetry transformations used to generate equivalent atoms: -x + 1, y, -z + 1/2

Bond lengths	
Pt(1)-P(2)	2.259(2)
Pt(1)-P(1)	2.259(2)
Pt(1)-I(1)	2.6523(11)
Pt(1)-I(2)	2.6562(9)
P(1) - O(1)	1.625(5)
P(2) - O(2)	1.632(5)
O(1)-C(1)	1.399(8)
O(2)-C(22)	1.400(8)
C(1)-C(2)	1.365(10)
C(1)-C(6)	1.380(10)
C(2)-C(3)	1.380(11)
C(3)-C(4)	1.384(11)
C(4)-C(5)	1.396(10)
C(4)-C(7)	1.533(10)
C(5)-C(6)	1.372(10)
C(7)-C(25)'	1.541(10)
C(22)-C(27)	1.367(10)
C(22)-C(23)	1.372(10)
C(23) - C(24)	1.385(11)
C(24)-C(25)	1.384(11)
C(25)-C(26)	1.379(10)
C(25)-C(7)'	1.541(10)
C(26) - C(27)	1.398(10)
Bond angles	
P(2)-Pt(1)-P(1)	96.86(7)
P(2) - Pt(1) - I(1)	168.82(5)
P(1)-P(1)-I(1)	89.90(5)
P(2)-P(1)-I(2)	84.73(5)
P(1)-P(1)-I(2)	176.53(5)
I(1) - Pt(1) - I(2)	88.07(2)
C(25)' - C(7) - C(4)	108.1(6)
0(23)	100.1(0)

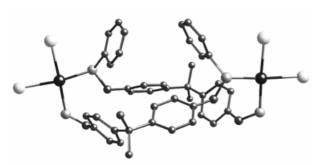


Figure 2. View of the 28-membered metallacycle of 10; six phenyl groups (two at P1 and P1' and one at P2 and P2') are omitted for clarity

times under rigorously anhydrous conditions and the same result was obtained. Furthermore, the reaction between the Cu complex and the same sample of ligand 4 used in the reaction with [Pd(PhCN)₂Cl₂] in toluene, gave a product (see below) which does not arise from P-O bond hydrolysis in ligand 4. Another possibility is that a very complicated reaction takes place which could involve sulfur coordination to the palladium centre. In this case, a lengthening and breaking of one P-O bond can occur by a probable, but not experimentally proven, contribution of the solvent. Undoubtedly, the characterization of 13 is fundamental to the understanding of this reaction. Unfortunately, several attempts to obtain suitable crystals for X-ray analysis of 13 failed so far. However, other studies have to be conducted to give insight into this reaction.

Reaction of [Pt(COD)I₂] with 1 equivalent of ligand 4 produced a mixture of compounds, as could be inferred by the presence of several peaks in the ³¹P{¹H} NMR spectrum. It is also likely that a product similar to 12 can be formed in this reaction. Differently from palladium, reaction between [Cu(NCCH₃)₄]BF₄ and ligand 4 in a 1:1 molar ratio in toluene afforded the white ionic metallamacrocycle $[Cu(\mu-4)][BF_4]_2 \cdot 2CH_3CN$ (14), which was soluble in chlorinated solvents, acetone and methanol. Compound 14 was found to be a 1:2 electrolyte in methanol solution.

Complex 14 presents elemental analysis and NMR spectroscopic data fully consistent with the proposed structure. Indeed, only two sharp singlets are present for tert-butyl groups in the ¹H NMR spectrum, consistent with the proposed symmetric structure. Furthermore, a sharp singlet at $\delta = 108.81$ is present in the ${}^{31}P\{{}^{1}H\}$ NMR spectrum.

On the basis of the similar structural features of ligands 3 and 5, we expect a similar behaviour in the reactions between 5 and Pd, Pt and Cu complexes. Only in the case of the reaction with the Cu complex, was it not possible synthesise a product in pure form. A rapid degradation of the initially formed macrocycle probably occurs in solution.

The reaction of [Pd(PhCN)₂Cl₂] with ligand 5 in toluene and in a 1:1 molar ratio, led to the formation of an orangebrown precipitate, which shows a singlet at $\delta = 107.68$ together with two signals of very low intensity at $\delta = 86.6$ and 85.7 in the ³¹P{¹H} NMR spectrum (CDCl₃). However, several recrystallisations from toluene/hexane made it possible to obtain the pure chiral metallamacrocycle [Pd(µ-5)Cl₂]₂ (15).

Its ³¹P{¹H} NMR spectrum (CDCl₃) features only the signal at $\delta = 107.68$, while all expected signals in the correct integration ratio are present in the ¹H NMR spectrum. By adding ligand 5 to a solution of [Pt(COD)I₂] in toluene, the metallamacrocycle [Pt(μ-5)I₂]₂ (16) precipitated as a yellow solid. The resulting compound was not in a pure form, but

O(1)-P(1)-P(1)

O(2) - P(2) - P(1)

C(1) - O(1) - P(1)

C(22) - O(2) - P(2)

C(2)-C(1)-O(1)

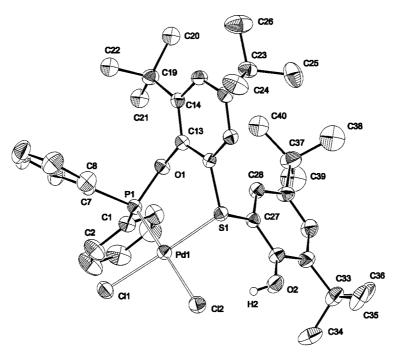


Figure 3. ORTEP view of the structure of the complex 12 together with the numbering scheme; the ellipsoids for the atoms are drawn at the 30% probability level

Table 2. Selected bond lengths [Å] and angles [°] for 12·2CH₂Cl₂

Bond lengths	
Pd(1)-P(1) Pd(1)-S(1) Pd(1)-Cl(1) Pd(1)-Cl(2) S(1)-C(18) S(1)-C(27) P(1)-O(1) O(1)-C(13) O(2)-C(32) C(13)-C(18)	2.1985(15) 2.2770(13) 2.3149(14) 2.3769(15) 1.784(5) 1.796(5) 1.633(3) 1.385(6) 1.343(7) 1.400(6)
Bond angles	
P(1)-Pd(1)-S(1) P(1)-Pd(1)-Cl(1) S(1-Pd(1)-Cl(1) S(1-Pd(1)-Cl(1) P(1)-Pd(1)-Cl(2) S(1)-Pd(1)-Cl(2) Cl(1)-Pd(1)-Cl(2) C(18)-S(1)-C(27) C(18)-S(1)-Pd(1) C(27)-S(1)-Pd(1) C(27)-S(1)-Pd(1) C(13)-O(1)-P(1) C(18)-C(13)-O(1) C(13)-C(18)-S(1)	93.41(6) 87.13(6) 176.52(5) 175.24(5) 87.72(6) 92.01(6) 103.1(2) 110.87(15) 110.57(17) 114.31(13) 125.8(3) 119.9(4) 124.4(4)

repeated recrystallisations from toluene/hexane allowed us to obtain the pure compound **16**. It was characterised by elemental analyses, $^{31}P\{^1H\}$ and 1H NMR spectroscopy. In the $^{31}P\{^1H\}$ NMR spectrum, a singlet at $\delta=84.06$ (J $_{PtP}$ 5543) is present.

M = Pd, X = Cl, 15 M = Pt, X = I, 16

Conclusion

A new class of dinuclear metallamacrocycles $[M(\mu-L)X_2]_2$ [M = Pd^{II}, Pt^{II}, Cu^I] characterised by a 28-membered ring was obtained using the ditopic ligands 3 and 5. In the case of 4, only the Cu^I-based dinuclear macrocycle was formed with this ligand. Different results were achieved with PdII and Pt^{II} complexes on account of sulfur being involving in the course of the reaction. The lack of formation of cyclic tri- and tetranuclear species in the reaction of 3 with PdII, PtII and CuI substrates is a consequence both of the geometry of ligand 3 and of thermodynamic factors owing to the very strong metal-phosphorus bond. Another consequence of the ligand geometry is that when ligand 3 was used in the reaction with $[Ru(\eta^6-p\text{-cymene})Cl_2]_2$, only the ${[Ru(\eta^6-p\text{-cymene})Cl_2]_2[\mu\text{-}(p\text{-}$ dinuclear complex Ph₂POC₆H₄)₂C(Me)₂] was obtained^[6] and attempts to obFormation of Metallamacrocycles FULL PAPER

tain bi- and tetranuclear metallamacrocycles were unsuccessful. The formation of the dinuclear metallamacrocycles $[M(\mu\text{-}L)X_2]_2~(M=Pd^{II},~Pt^{II},~Cu^I,~L=3,~5)$ was promoted by the presence of \emph{cis} -coordinated labile ligands in the starting complexes. Thus, the reaction of $[M(PPh_3)_4]~(M=Pt,~Pd)$ with dihalobenzophenone afforded the dinuclear complex $\{[MX(PPh_3)_2]_2[(\mu\text{-}(C_6H_4)_2CO]\}~(M=Pt,~X=I,~M=Pd,~X=Br,~I)~$ and failed to give $\{[MX_2(PPh_3)]_2[(\mu\text{-}(C_6H_4)_2CO]_2\}.^{[11]}$

A very interesting aspect connected with the formation of metallamacrocycles is the introduction of chirality by suitable self-assembly building blocks. At least five different ways of rationally designed chiral supramolecular species have been indicated. [12] Stang successfully used an appropriate metal complex bearing (*R*)-(+)-BINAP as the chiral ancillary ligand for the synthesis of chiral palladium(II) and platinum(II) supramolecular square-planar species. [12] The use of the ditopic chiral ligand 5 made the synthesis of chiral palladium(II)- and platinum(II)-based macrocycles possible.

From this work we conclude that chiral dinuclear square-planar metallamacrocycles can be obtained by spontaneous self-assembly of building units of palladium(II) and platinum(II) complexes containing labile ligands and the chiral bidentate ligand 5. This methodology can be extensively used owing to the great number of chiral ligands, with different geometric properties, which should prove to be biand tridentate functional building blocks for the synthesis of chiral supramolecular squares. Up to now, the use of chiral dinuclear square-planar metallamacrocycles as organometallic reagents is an unexplored topic.

The ability for molecular recognition of these new metallamacrocycles depends on the size of the cavity formed. On the basis of the X-ray crystal structure of the complex 10·2CH₂Cl₂ the cavity determined by meaningful cross-ring interatomic distances seems to be too small to bind guest molecules. We are actually trying to synthesize different types of bis(phosphinito) ligands with the aim of obtaining metallamacrocycles that can act as host molecules in the formation of supramolecular species.

Experimental Section

All syntheses were performed under argon or nitrogen using standard Schlenk-tube techniques. Freshly distilled, dry, and oxygen-free solvents were used throughout. [D₆]Benzene (99.5+%) and [D₃]chloroform (99.8+%) were used as received from Aldrich Chemical Co. All other reagents were of the highest purity grade commercially available and were used without further purification. Redox Analytical Laboratories, Milan, performed microanalyses. 1 H, 31 P and 13 C NMR spectra were obtained with a Bruker AMX R-300 spectrometer equipped with a broad-band probe operating at 300.13, 121.49 and 75.46 MHz, respectively [δ (ppm) relative to Me₄Si, J (Hz)]. 31 P{ 1 H} spectra were run using an aqueous H₃PO₄ sample (85%) as external reference (δ = 0). Standard pulse sequences were employed for 1 H-2D-NOESY. Mixing times of 0.8 s were used for the phase-sensitive NOESY experiments. [Cu(NCCH₃)₄]BF₄[13], [1 P(Ph₂PO)C₆H₄]₂CMe₂], 16 and 4,4′,6,6′-

di-*tert*-butyl-2,2'-thiobisphenol^[7] were prepared by standard methods. IR spectra of KBr pellets were recorded with a Perkin–Elmer FT-IR 1720 spectrometer. GLC analyses were performed with a Carlo Erba HRGC 5160 series Mega instrument using a 25-m Mega OV1 column.

[{2-Ph₂PO-3,5-(CMe₃)₂C₆H₂}₂S] (4): The synthetic procedure was essentially the same as previous described for 1, using a solution of PPh₂Cl (1.98 g, 9.00 mmol) and a solution of 4,4′,6,6′-di-*tert*-butyl-2,2′-thiobisphenol (2.00 g, 4.50 mmol) and NEt₃ (1.45 g, 14.3 mmol) in toluene (40 mL each). The reaction mixture was warmed to room temperature and then kept under continuous stirring for 72 h. The ligand 4 was obtained as a white solid by filtration of the resulting mixture and crystallisation from toluene/hexane (1:3, v/v). Yield 87% (3.17 g, 3.90 mmol). – C₅₂H₆₀O₂P₂S (811.0): calcd. C 77.01, H 7.46, S 3.95; found C 76.97, H 7.49, S 3.91. – ¹H NMR (CDCl₃): δ = 1.26 [s, 18 H, C(CH₃)₃], 1.31 [s, 18 H, C(CH₃)₃], 7–7.12 (m, 12 H, CH), 7.28 (d, ³*J* = 2.5 Hz, 2 H, CH), 7.39 (d, ³*J* = 2.5 Hz, 2 H, CH), 7.61–7.67(m, 8 H, CH). – ³¹P{¹H} NMR (CDCl₃): δ = 117.21 (s).

[{p-[(C₁₀H₆O)₂PO]C₆H₄}₂CMe₂] (5): *n*BuLi solution in hexanes (1.6 m, 1.09 mL, 0.112 g, 1.75 mmol) was added dropwise to a solution of 2,2-bis(4-hydroxyphenyl)propane (0.200 g, 0.876 mmol) in THF (20 mL) at -78 °C. The white mixture was added to a solution of (S)-(1,1'-binaphthalene-2,2'-dioxy)chlorophosphane in THF (3 mL) at 0 °C. The resulting pale yellow solution was allowed to reach room temperature and stirred for ca. 2 h. The solution was then dried under vacuum and extracted with toluene (3 × 5 mL). Decreasing the solution volume followed by the addition of hexane led to the formation of a white solid. The pure ligand 3 was isolated, washed with small volumes of hexane and finally dried under vacuum with a yield of 70% (0.525 g, 0.613 mmol). -C₅₅H₃₈O₆P₂ (856.8): calcd. C 77.10, H 4.47; found C 77.3, H 4.49. - ¹H NMR (C₆D₆): δ = 1.47 [s, 6 H, C(CH₃)₂], 6.96–7.65 (m, 24 H, CH). - ³¹P{¹H} NMR (C₆D₆): δ = 144.79 (s).

[PdCl₂(μ-3)]₂ (6): Ligand **3** (0.165 g, 0.260 mmol), dissolved in toluene (5 mL), was treated with a solution of [Pd(PhCN)₂Cl₂] (0.100 g, 0.260 mmol) in toluene (30 mL). A yellow solid precipitated immediately and was separated from the mother solution after ca. 1 h, washed with toluene (3 × 1 mL), diethyl ether (1 × 1 mL) and then dried under vacuum. Yield 82% (0.166 g, 0.107 mmol). – $C_{78}H_{68}Cl_4O_4P_4Pd_2$ (1548): calcd. C 60.52, H 4.43; Cl, 9.16; found C 60.16, H 4.34; Cl, 8.93. – ¹H NMR (CDCl₃): δ = 1.46 [s, 6 H, C(CH₃)₂], 6.45 (d, ³*J* = 8.4 Hz, 4 H, CH), 6.70 (d, ³*J* = 8.7 Hz, 4 H, CH), 7.28–7.46 (m, 12 H, CH), 7.66–7.69 (m, 8 H, CH). – ³¹P{¹H} NMR (CDCl₃): δ = 109.03 (s).

[Pd₂Cl₄(μ-3)]_n (7): The orange compound 7 was prepared from [Pd(PhCN)₂Cl₂] (0.080 g, 0.208 mmol) and 3 (0.062 g, 0.104 mmol) as described above for compound 6. Yield 75% (0.074 g, 0.078 mmol). - C₃₉H₃₄Cl₄O₂P₂Pd₂ (951.3): C. 49,24; H. 3,60; Cl. 14,91; found C. 49,20; H. 3,63; Cl. 14,87. - ¹H NMR (CD₃CN): δ = 1.37 [s, 6 H, C(CH₃)₂], 6.25 (d, ³*J* = 8.7 Hz, 4 H, CH), 6.52 (d, ³*J* = 8.9 Hz, 4 H, CH), 6.86–7.69 (m, 20 H, CH). - ³¹P{¹H} NMR (CD₃CN): δ = 106.32 (s).

{[Pd(η³-C₃H₅)Cl]₂(μ-3)} (8): To a solution of [Pd(η³-C₃H₅)Cl]₂ (0.05 g, 0.137 mmol) in dichloromethane (10 mL) was added ligand 3 (0.082 g, 0.137 mmol). The resulting yellow solution was stirred for 1 h and then reduced to 3 mL in vacuo. Addition of hexane (10 mL) led to the formation of a yellow precipitate. Yield 72% (0.048 g, 0.050 mmol). $- C_{45}H_{44}Cl_2O_2P_2Pd_2(962.5)$: calcd. C 56.15, H 4.61; Cl, 7.37; found C 56.25, H 4.53; Cl, 6.99. $- {}^{1}H$ NMR (CDCl₃): $\delta = 1.55$ [s, 6 H, C(CH₃)₂], 2.20 [d (br.), ${}^{3}J = 12$ Hz, 2

H, H_{b'}], 3.13 [d (br.), ${}^{3}J = 6$ Hz, 2 H, H_b], 3.57 [dd (br.), ${}^{3}J = 11$ Hz, J_{HP} 15 Hz, 2 H, H_{a'}], 4,67 [dd (br.), J_{HP} 7 Hz, 2 H, H_a], 5.22 [m (br.), 2 H, H_c], 6.99 (d, ${}^{3}J = 5$ Hz, 4 H, H_e), 7.01 (d, ${}^{3}J = 5$ Hz, 4 H, H_d), 7.43–7.45 (m, 12 H, H_{m,p}), 7.85–7.93 (m, 8 H, H_o). – ${}^{31}P\{{}^{1}H\}$ NMR (CDCl₃): δ = 123.29 (s).

 $[Pd(\eta^3-C_3H_5)(\mu-3)]_2[OTf]_2$ (9): The bridge complex 8 (0.077 g, 0.080 mmol) was dissolved in dichloromethane (10 mL) and AgCF₃SO₃ (0.041 g, 0.16 mmol) was added with continuous stirring. After 5 min, ligand 3 (0.048 g, 0.080 mmol), dissolved in THF (2 mL), was added to the suspension and the mixture stirred for a further 1 h. The mixture was filtered through Celite, and the solution was concentrated to a small volume; addition of hexane and vigorous shaking led to the formation of 9 as a white solid. Yield 65% (0.093 g, 0.050 mmol). $-C_{86}H_{78}F_6O_{10}P_4S_2Pd_2$ (1786): calcd. C 57.82, H 4.40, S 3.59; found C 57.3, H 4.20, S 3.74. – ¹H NMR (CDCl₃): $\delta = 1.53$ [s, 12 H, C(CH₃)₂], 3.33 [s (br.), 2H, H_{b'}], 3.48 [s (br.), 2 H, H_b], 3.87 [s (br.), 2 H, H_{a'}], 3.95 [s (br.), 2 H, H_a], 5.32 [m (br.), 2 H, H_c], 6,48 [d (br.), ${}^{3}J = 8$ Hz, 8 H, H_e], 7,02 [d (br.), ${}^{3}J = 10 \text{ Hz}$, 4 H, H_d], 7,41–7.46 [m (br.), H_{m,p}, 24 H], 7,83-7.86 [m (br.), 16 H, H_o]. $- {}^{31}P{}^{1}H$ } NMR (CDCl₃): $\delta =$ 120,6 [s (br.)].

[PtI₂(μ-3)]₂ (10): The dinuclear complex was prepared by reaction of ligand **3** (0.089 mg, 0.143 mmol) with a solution of [Pt(COD)I₂] (0.080 g, 0.143 mmol) in toluene (30 mL). A yellow precipitate was immediately obtained. The reaction mixture was stirred for 1 h and then the solvent was removed. The precipitate was washed with toluene (3 × 1 mL) and finally dried in vacuo. Yield 78% (0.117 g, 0.056 mmol). $-C_{78}H_{68}I_4O_4P_4P_2$ (2091): calcd. C 44.8, H 3.28, I 24.28; found C 45.15, H 3.39, I 24.60. - ¹H NMR (CDCl₃): δ = 1.51 [s, 6 H, C(CH₃)₂], 6.35 (d, $^3J = 8.4$ Hz, 4 H, CH), 6.72 (d, $^3J = 8.3$ Hz, 4 H, CH), 7.16–7.41 (m, 12 H, CH), 7.63–7.70 (m, 8H, CH). - ³¹P { ¹H} (CDCl₃): δ = 81.81 (s, $J_{PtP} = 3968$ Hz).

[Cu(μ-3)]₂[BF₄]₂·2CH₃CN (11): A dichloromethane solution containing ligand **3** (0.095 g, 0.159 mmol) was added dropwise to a solution of [Cu(CH₃CN)₄]BF₄ (0.050 g, 0.159 mmol) in CH₂Cl₂ (10 mL). The colourless solution was kept under continuous stirring for ca. 1 h, filtered through Celite and concentrated under vacuum until a volume of 1 mL was achieved. Further addition of hexane (10 mL) led to the formation of a white solid which was isolated, washed several times with hexane and dried. Yield 87% (0.109 g, 0.069 mmol). - C₈₂H₇₄B₂Cu₂F₈N₂O₄P₄ (1576): calcd. C 62.49, H 4.73, N 1.78; found C 62.29, H 4.93, N 1.59. - ¹H NMR (CDCl₃): δ = 1.49 [s, δ H, C(CH₃)₂], 1.98 (s, δ H, CH₃), δ .7 (d, ³*J* = 8.4 Hz, 4 H, CH), 6.93 (d, ³*J* = 8.3 Hz, 4 H, CH), 7.35–7.43 (m, 20 H, CH). - ³¹P {¹H} NMR (CDCl₃): δ = 99.06 (s). - Λ [ohm⁻¹ cm² mol⁻¹] (5 10⁻⁴ - 10⁻³ M CH₃OH) = 182.

[PdCl₂{[2-Ph₂PO-3,5-(MeC)₂C₆H₂][3,5-(Me₃Cl₂C₆H₂OH]S}] (12): A solution of [Pd(PhCN)₂Cl₂] (0.050 g, 0.130 mmol) in toluene (10 mL) was treated with a toluene solution of ligand 4 (0.105 g, 0.130 mmol). The yellow solution was stirred for ca. 30 min and then reduced to a small volume (1 mL). By crystallization from a toluene/hexane mixture, a yellow solid was obtained. Yield 78% (0.081 g, 0.101 mmol). – C₄₀H₅₁Cl₂O₂PSPd (804.2): calcd. C 59.74, H 6.39, Cl 8.82, S 3.99; found C 59.37, H 6.31, Cl 8.26, S 4.23. – ¹H NMR (CDCl₃): δ = 0.99 [s, 9 H, C(CH₃)₃], 1.03 [s, 9 H, C(CH₃)₃], 1.30 [s, 9 H, C(CH₃)₃], 1.31 [s, 9 H, C(CH₃)₃], 6.34 (d, 3J = 2.1 Hz, 1 H, CH_{Ar}), 7.21–7.71 (m, 14 H, CH). – ³¹P {¹H} (CDCl₃): δ = 135.66 (s).

 $\text{[Cu($\mu$-4)]_2[BF_4]_2}\cdot\text{CH}_3\text{CN}$ (14): The white compound 13 was prepared from [Cu(CH_3CN)_4]BF_4 (0.080 g, 0.254 mmol) and the ligand 4 (0.206 g, 0.254 mmol) as described above for the compound

11. Yield 89% (0.222 g, 0.113 mmol). $-C_{106}H_{123}B_2Cu_2F_8NO_4P_4S_2$ (1963): calcd. C 64.83, H 6.31, N 0.71, S 3.26; found C 64.48, H 6.42, N 0.80, S 2.95. - ¹H NMR (CDCl₃): δ = 0.87 [s, 18 H, C(CH₃)₃], 1.24 [s, 18 H, C(CH₃)₃], 2.26 (s, 3 H, CH₃), 7.01–7.40 (m, 24 H, CH). - ³¹P {¹H} NMR (CDCl₃): δ = 108.81 (s). - Λ [ohm⁻¹ cm² mol⁻¹] (5 10^{-4} - 10^{-3} M CH₃OH) = 183.

[PdCl₂(μ-5)]₂ (15): Ligand **5** (0.110 g, 0.128 mmol), dissolved in toluene (5 mL), was added dropwise with continuous stirring to a solution of [Pd(PhCN)₂Cl₂] (0.05 g, 0.128 mmol) in toluene (10 mL). A yellow-orange solid began to precipitate. After 2 h, the solid was isolated from the reaction mixture, washed with toluene (3 × 1 mL), and dried under vacuum. Yield 73% (0.097 g, 0.046 mmol). – C₁₁₀H₇₆Cl₄O₁₂P₄Pd₂ (2068): calcd. C 63.88, H 3.70, Cl 6.86; found C 63.56, H 4.04, Cl 6.93. – ¹H NMR (CDCl₃): δ = 1.27 [s, δ H, C(CH₃)₂], δ .25 (d, δ ³J = δ .6 Hz, CH, 4 H), 5.5 (d, δ ³J = δ .6 Hz, 4 H, CH), 7.27–7.65 (m, 12 H, CH), 7.89–8.01 (m, 8 H, CH). – δ ¹P{¹H} NMR (CDCl₃): δ = 107.68 (s).

[PtI₂(μ-5)]₂ (16): The yellow bridge species was synthesized by the reaction of a solution of [Pt(COD)I₂] (0.050 g, 0.089 mmol) in toluene (10 mL) with a toluene solution of ligand 5 (0.076 mg, 0.089 mmol), using the same procedure for the synthesis of 16. Yield 78% (0.116 g, 0.045 mmol). — $C_{110}H_{76}I_4O_{12}P_4Pt_2$ (2611): calcd. C 50.59, H 2.93, I 19.44; found C 50.28, H 2.59, I 19,60. — 1H NMR (CDCl₃): δ = 1.27 [s, 6 H, C(CH₃)₂], 6.36 (d, 3J = 8.8 Hz, 4 H, CH), 6.63 (d, 3J = 8.3 Hz, 4 H, CH), 7.16—7.88 (m, 20 H, CH). — ^{31}P { 1H } NMR (CDCl₃): δ = 84.06 (s, J_{PtP} 5543 Hz).

X-ray Structure Determination of 10·2CH₂Cl₂ and 12·2CH₂Cl₂: The crystals of both complexes were obtained by crystallization from dichloromethane solutions and molecules of solvent were found in them. The intensity data of both complexes were collected at room temperature with a Siemens AED (10·2CH2Cl2) and with an Enraf-Nonius CAD 4 (12·2CH₂Cl₂) single-crystal diffractometer using graphite-monochromated Mo- K_{α} (10·2CH₂Cl₂) and Cu- K_{α} $(12\cdot2CH_2Cl_2)$ radiation and the $\theta/2\theta$ scan technique. Crystallographic and experimental details for both structures are summarized in Table 3. A correction for absorption was made for both complexes [maximum and minimum value for the transmission coefficient was 1.000 and 0.487 (10·2CH₂Cl₂), 1.000 and 0.697 (12·2CH2Cl2).[14] The structures were solved by Patterson and Fourier methods and refined by full-matrix least-squares procedures (based on F_0^2) with anisotropic thermal parameters in the last cycles of refinement for all the non-hydrogen atoms, except for the carbon and chlorine atoms of the solvent molecules (10·2CH₂Cl₂) and except for the carbon atoms of the two isobutyl groups which were found disordered in two positions with an occupancy factor of 0.5 (12·2CH₂Cl₂). In both structures, the hydrogen atoms were introduced into the geometrically calculated positions and refined riding on the corresponding parent atoms. In the final cycles of refinement a weighting scheme $w = 1/[\sigma^2 F_0^2 + (0.0533 P)^2]$ $(10.2\text{CH}_2\text{Cl}_2)$ and $w = 1/[\sigma^2 F_0^2 + (0.1271 P)^2]$ $(12.2\text{CH}_2\text{Cl}_2)$ where $P = (F_0^2 + 2 F_c^2)/3$ was used. All calculations were carried out with the DIGITAL AlphaStation 255 computers of the "Centro di Studio per la Strutturistica Diffrattometrica" del CNR, Parma, using the SHELX-97 systems of crystallographic computer programs.^[15] The supplementary material for the structures includes the lists of atomic coordinates for the non-H atoms, of calculated coordinates for the hydrogen atoms, of anisotropic thermal parameters and complete lists of bond lengths and angles. The details of the crystal structure investigations have been deposited in the Cambridge Crystallographic Data Centre as supplementary publications no. CCDC-143608 (10·2CH₂Cl₂) and -143609 (12·2CH₂Cl₂). Copies of the data can be obtained free of charge on application to CCDC,

Formation of Metallamacrocycles FULL PAPER

Table 3. Crystal data and structure refinement for $\mathbf{10\cdot2CH_2Cl_2}$ and $\mathbf{12\cdot2CH_2Cl_2}$; $R1 = \Sigma|F_o - F_c|/|\Sigma(F_o) \ wR2 = \{\Sigma[w(F_o^2 - F_c^2)^2]/|\Sigma(w(F_o^2)^2]\}^{1/2}$

	10·2CH ₂ Cl ₂	12·2CH ₂ Cl ₂
Empirical formula	$C_{78}H_{68}I_4O_4P_4Pt_2\cdot 2CH_2Cl_2$	C ₄₀ H ₅₁ Cl ₂ PPdS·2CH ₂ Cl ₂
Formula mass	2260.84	973.99
Temperature	293(2) K _o	293(2) K _o
Wavelength	0.71144 A	1.54184 A
Crystal system	monoclinic	monoclinic
Space group	C2/c .	$P2_1/n$
Unit cell dimensions	a = 31.436(5)A	a = 14.740(4)A
	b = 16.563(4)A	b = 19.851(5)A
	c = 15.894(4)A	c = 16.272(4)A
	$\beta = 101.28(6)^{\circ}$	$\beta = 93.17(6)^{\circ}$
Volume	8116(3) A ³	$4754(2) A^3$
Z	4	4
Density (calcd.)	1.850 Mg/m^3	1.361 Mg/m^3
Absorption coefficient	52.23 cm^{-1}	72.28 cm^{-1}
F(000)	4320	2008
Crystal size	$0.32 \times 0.25 \times 0.21 \text{ mm}$	$0.12 \times 0.22 \times 0.22 \text{ mm}$
θ range [°]	3.08 - 27.10	3.52 - 70.02
Index ranges	$-40 \le h \le 39, -6 \le k \le 21, -19 \le l \le 20$	$-17 \le h \le 17, \ 0 \le k \le 24, \ 0 \le l \le 19$
Reflections collected	11581	9313
Independent reflections	8909 [R(int) = 0.1353]	8995 [R(int) = 0.0554]
Obs. refl $[I > 2\sigma(I)]$	4772	6097
Data/restr./param.	8909/6/448	8995/0/482
Goodness-of-fit on F^2	0.838	0.981
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0421, wR2 = 0.0905	R1 = 0.0589, wR2 = 0.1704
R indices (all data)	R1 = 0.0959, wR2 = 0.1035	R1 = 0.0831, wR2 = 0.1883

12 Union Road, Cambridge CB2 1EZ, UK [Fax: (internat.) + 44-1223/336-033, E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

We thank MURST for financial support.

- [1] [1a] S. Leininger, B. Olenyuk, P. J. Stang, Chem. Rev. 2000, 100, 853. [1b] P. J. Stang, Chem. Eur. J. 1998, 4, 19. [1c] P. N. W. Baxter, Metal Ion Directed Assembly of Complex Molecular Architectures and nanostructures in Comphrensive Supramolecular Chemistry, vol. 9 (Series Ed.: J-M. Lehn; Volume Eds.: J. P. Sauvage, M. W. Hosseini), Pergamon, Oxford, 1996, chapter 5, p. 165. [1d] G. X. Liu, R. Puddephatt, Organometallics 1996, 15, 5257. [1e] S. Achar, J. J. Vittal, R. Puddephatt, Organometallics 1996, 15, 43.
- Jal J. A Whiteford, C. V. Lu, P. J. Stang, J. Am. Chem. Soc. 1997, 119, 2524. [2b] P. J. Stang, D. H. Cao, S. Saito, A. A. M. Arif, J. Am. Chem. Soc. 1994, 117, 6273. [2c] P. J. Stang, D. H. Cao, J. Am. Chem. Soc. 1994, 116, 4981.
- [3] C. J. Jones, Chem. Soc. Rev. 1998, 27, 289.
- [4] [4a] P. J. Stang, B. Olenyuk, Acc. Chem. Res. 1997, 30, 502.
 [4b] F. Makoto, K. Ogura, Bull. Chem. Soc. Jpn. 1996, 69, 1471.

- [5] F. S. McQuillan, H. Chen, T. A. Hamor, C. J. Jones, H. A. Jones, P. Sidebotham, *Inorg. Chem.* 1999, 38, 1555.
- [6] C. G. Arena, D. Drago, M. Panzalorto, G. Bruno, F. Faraone, Inorg. Chim. Acta 1999, 292, 84.
- [7] S. D. Pastor, J. D Spivack, L. P Steinhuebel, J. Heterocycl. Chem. 1984, 21, 1285.
- [8] G. Franciò, C. G. Arena, F. Faraone, C. Graiff, M. Lanfranchi, A. Tiripicchio, Eur. J. Inorg. Chem. 1999, 1219.
- [9] F. R. Hartley, The Chemistry of Platinum and Palladium, Applied Science Publishers Ltd., Ripple Road, Barking, Essex, England, 1973.
- [10] P. S. Pregosin, R. Salzmann, Coord. Chem. Rev. 1996, 155, 35
- [11] J. Manna, C. J. Kuchl, J. A. Whiteford, P. J. Stang, Organometallics 1997, 16, 1897.
- [12] M. Fuss, H. U. Siehl, B. Olenyuk, P. J. Stang, Organometallics 1999, 18, 758.
- [13] G.J. Kubas, *Inorg. Synth.* **1979**, *19*, 90.
- [14] N. Walker, D. Stuart, Acta Crystallogr., Sect. A 1983, 39 158.
 F. Ugozzoli, Comput. Chem. 1987, 11, 109.
- [15] G. M. Sheldrick, SHELX-97, Program for the Solution and the refinement of Crystal Structures, Universität Göttingen, Germany, 1997.

Received April 28, 2000 [100167]